THE TURBULENT BOUNDARY LAYER IN THE INITIAL SEGMENT
OF AXISYMMETRIC CHANNELS WHEN FLOW SWIRLING OCCURS
AT THE INLET
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We present an approximate solution for the problem of a turbulent boundary layer in an in-
compressible liquid in the case of flow swirling at the inlet,

The twisted flow of a liquid in channels is used in a variety of equipment and installations,

The frictional losses are one of the fundamental factors governing the energy expended on the move-
ment of the working fluid through the channels. The development of a boundary layer at the walls of the
channel leads to a change in the pressure recovery factor which is an indication of channel efficiency. Equal-
ly important is the determination of the point of separation.

To determine the above-enumerated characteristics, we should examine the flow of a viscous liquid,

In actual practice we usually deal with flows having a turbulent boundary layer at a solid surface, A
theoretical investigation of such flows is found in [1-3].

However, in the cited literature we find indications only of the possibility of a basic solution for such
problems and no quantitative estimates are given for the effect of flow swirling, Moreover, the authors
assume an approximate flow model in a nonviscous core, assuming it should be potential, with the vortex
situated along the channel axis, which is a special form of swirling,

Below we present an approximate solution for the problem of the turbulent boundary layer in an in-
compressible liquid for the case of flow swirling at the channel inlet, Consideration has been given to the
effect of the transverse curvature of the solid surface on the boundary layer and to the mutual effect of the
transverse and longitudinal components of the coefficients of turbulent friction and the velocity profiles in
the boundary layer. A number of quantitative extimates are given. No limitation has been imposed on the
form of the swirling.

1. Integral Relationships for the Boundary Layer. The equations of motion in the boundary layer in
a cylindrical coordinate system, with consideration of axial symmetry, has the following form [4]:
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The boundary conditions
r:R’ LL:U:UL’:O,
(2

r=R—6, u=U, w=uw,.

Neglecting the effect of rotation on the transverse pressure gradient in the boundary layer (since in
the initial segment where the swirling is intensive the thickness of the layer is small, and where the thickness
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of the layer is comparable to the tube radius the swirling is weak) and taking into consideration the experi~
mental fact [5, 6]
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we turn in the normal fashion from system (1) to the integral relationship of the boundary layer:
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2, Frictional Stress and Velocity Profiles.
unknowns ($5*,

The system of two differential equations (3) contains 5
H, Ty &xy’ Tyg). To close this system we have to establish 3 additional relationships,
We will adopt the Prandtl two-layer boundary-layer model, At some distance from the channel walls
we have
uy=—puv'), =—p(wv).

(4)
On the basis of the results [7] we will assume the following relationships between the frictional stres-
ses and the averaged components of velocity in the boundary layer:
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is small, in first approximation we will neglect the effect of the pressure gradient

From the condition of equilibrium for the liquid volumes in the boundary layer we

N2
Since the angle

on the velocity profiles,
will then have

r7, = Rty, 1ty = R%Ty. (6)
Assuming I = ky and integrating (5) with consideration of (6), we have
Y —_
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Since (6) is valid near the wall, i.e., when r/R ® 1, in (7) we will assume in binomials that /R =1,
Then with consideration of (2) the velocity profiles will be described by the equations

u°=1+—B—]n \VE—I R_—L’/) (VE-I-T"R——(S)_
2. O R—y R=8)(VR+VR=y)’ (8)
F"zl—k—ilny“.
2y
We note that when 0 = A = oo
0<BLL, 1=C>0.
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o U-i a u] ATIEEe X When B = 1 (the flow is not twisted) the first equation in (8)
kK Tk xA'U/ T;? coincides with the equation for the velocity profile in axisymmet-
a
08 // }2' ° ric channels without swirling [8], When C = 1 (the rotation of the
/ M / E body in a nonmoving medium) the second eguation in (8) changes
+,% :
2 / A T ‘ into the profile of the circulation observed experimentally in linear
6 A A vortices [9].
al / 5\\/ +—1
0 x ¥y x—2 3. Resistance Laws., Equations (8) at the wall (when y = 0)
24 y { c &—J do not satisfy the adhesion conditions (2). In accordance with the
+ A & .
v—5 two-layer boundary-layer medel, let us turn te the laminar sub-
g2 = AT e —§ layer, Assuming that the parameters of the latter are functions
N ‘/:/V 4 a—7 not only of the technical properties of the liquid and the magnitudes
o of the frictional stresses at the wall, but also of the transverse
0 g9z 0% 96 a8 ro curvature of the channel [8], we write the distribution of the veloc-

ities i i in the following f :
Fig. 1. Distribution of swirling vel- ities in the laminar sublayer in the following form

ocity (a) and of the axial velocity () v — B In R—y I Cny [ 1 ( . L)Z
outside of the boundary layer on the Usg v R I, 2 R J'
basis of experimental results [5]: 1) . _ 9
Re = 5000; 2) 10,000; 3) 15,000; 4) bt 4 0LR Ree  k Reex

k
20,000; 5) 25,000, ((1-5) x° = 12); 6) o= v B oz, g

25,000, x¥=24; 7) 25,000, x® = 48,

Equations (8) and (9) should be regarded as identically valid
at the boundary of the laminar sublayer {y = 6;7). Assuming in these
equations that y = 61 = OzR/nW and equating one with the other, we obtain the relationship between the fric-
tional stress at the surface and the thickness of the boundary layer — the so-called resistance laws:

A _ oy =1 T=8R) (141 T—afn, )
B (1—y T—a/m, ) (1 +VI—38/R)
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When B = 1 the first equations in (9) and (10) coincide with the corresponding equations derived in [8].

-—kanm( 1 — i)
'

Ag in [8], we will assume that k and @ are equal to their values for the plane case (k = 0.4; « = 11.5),

Conditional Areas. Since the profiles (8) of the velocity and circulation have been determined, it is
not difficult to calculate the conditional areas:

Fr=4+ VA=V, f=(1—r9)2, (1D
AU T (s
e ln%(%r°3ﬂ+r°w) —fiIn —%lnfz—— 7lgr0*
) e B e g

When B = 1 the first two equations in (11) are analogous to the corresponding equations in [8].

5. Reduction of Integral Boundary-Layer Relationships into a System of Integral Equations. Having
presented the functions E and D in the form

E=E,+AE, D=D,+AD
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Fig. 2. Resistance factor for a cylindrical tube. The dashed line shows experimental
results [5].

Fig. 3. Resistance factor for a conic diffuser. The dashed lines denote the region of
experimental data [6] Re = (1-7)-10% the solid lines represent the theoretical curves,
with the upper line representing Re = 7-10°, and the lower line denoting Re = 10°,

and having multiplied the first equation in (3) by RPou?Po, after integration we obtain

xo
y = 1 [Do Re S (1 + F)UETIRPodxd 4 o UGF R ]
0

0Ey 0D,

*t
F (y, Py, P) =Dyl [PixAE + (1 + Pyy) AD].

The second equation in (3) is immediately integrated with the aid of the presentation of the function L
in the form L = Ly + AL:
R = _ L, Re 14 A—L) #2U”R”dx® + Ry USRY (13)
W LR 0 L, / xytAg Okt .

%

Thus we have derived the system of integral equations (12) and (13) to describe the flow in a turbulent
boundary layer in the presence of twisting,

For the solution of system (12)-(13) we have to establish the relationships

L3 Z
AD = AD (3, Ree, B), AE =AE (x, Rep, B)and AL = AL (ny, B, Re,, Z—‘)
2

Functions AD and AE are determined from (11) by eliminating z;. The function AL is obtained from

(11) through the introduction of the substitution
2y = 2 1 :_22_ Y 1—B
x YA = B*

6. A Method of Calculating Flow in a Nonviscous Core, As was noted earlier, in [1-3] etc., the flow
in a nonviscous core is assumed to be potential with the vortex situated at the channel axis. This scheme
does not correspond to reality and, moreover, fails to reflect the diversity of twisted flows. It follows from
an examination of the experimental results of [5, 6] etc., that the velocity profiles outside of the boundary
layer are similar. If we plot r‘il along the horizontal axis on the graph, and if we plot v{ or ug along the
vertical axis for the various Reynolds numbers and for the various distances from the inlet, all of the mea~-
sured points will line up near the general curves (Fig. 1). Consequently, the swirling velocity for a non-
viscous flow core and the longitudinal surface within the flow core in the first approximation can be chosen

in the form

v=k X)), =t )+ EX0)
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The functions f(r) and ¢(r) are determined by the design of the diffuser assembly and may be assumed to be
known, The functions k,(x) and uy(x) are found from the condition of a constant flow rate and the conserva-
tion of angular momentum, with consideration given to the effect of the frictional forces in the boundary
layer.

7. The Simplified Method, We see from (12) that it is associated with (13) only in terms of the para-
meter B,

If we denote

29 = z,/B,

the first two equations in (11) will be analogous to the corresponding equations for flow in a channel without
twisting [8], and the first equation (10) assumes the form

ey U=VI=§R (1 +VI=am,)
1 (I—y T—a/m, ) (1 +1 T—8/R)

— kB m( 1— ;“_} (14)

The latter is distinguished from the corresponding equation in [8] by the factor B in the second term of the
right-hand member,

For a low twisting ratio M < 2,0)B is a little different from unity. Therefore, if we assume in (14)
that B = 1, it will be identical to the corresponding equation for the case of untwisted flow in which z; has
been replaced by z‘i). Conseguently

%re = 1. (15)
Recalling the definition of X, from (15) we obtain

e R
¢ = fo “Nx

= - 16
B Ry H

It has turned out to be possible, on the basis of a series of calculations, to approximate R¥* and Ry
by means of the equations

lgR," = 1g My + n2? 4+ M, IgRe,
{1n
lgRy; = 1g My + nz, ++ M, IgRe .

For the case in which a flat plate is streamlined when Re > 10% we can assume in approximate terms
that

z, =021 + 1.74 lgRe. (18)

Since according to [7] A ® ®72, we have B = (1 + %2)»1/4. With consideration of (17) and (18) it then
follows from (16) that

Cr = Acfo’ (19)

A(Re, w) = T wexp [0.442(0.26+1.74 1gRe) (' T+ % — 1]

8. Comparison with Experiment. The experimental data on the detailed investigation of the type of
flow under consideration are extremely limited., For comparison with calculations based on the proposed
method we use [5] and [6], which gives the resistance factor as a function of ® and Re, as well as the veloc-
ity profiles.

Figure 2 shows the change in the resistance factor A in the case of a twisted liquid flow in a cylindrical
tube. On comparison with experiment [5], the initial value of %) was determined by extrapolation from the
point x% = 12, 24, 48, and 84 to the point x® = 0. We took the average value of n, for the entire range of
Re = 5000 — 25,000, equal to 2. For simplicity, ®{x') as a function of #; to ® = 0 was assumed to be linear,
which virtually corresponds to the conditions of the experiment. The agreement between the theoretical
curve calculated from (19) and the experimental curve should be regarded as satisfactory.

Our attention is drawn to the fact that with an increase in % and Re the slope of the curve A (%, Re)
(Fig. 2) diminishes continuaily, which is particularly noticeable for the curve My = 2, A similar phenome-
non was observed in the Koch experiment [10].
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The resitance factor A was measured in [6] for the range Re = (1-7)* 10° at various values of .
The theoretical curves, calculated from (19), are in satisfactory agreement with the experimental data

(Fig. 3).

NOTATION

A= (Tyg/my)% B =YA/1 + Ay C = V7 + A)

cf

Cf
D(;)a EO: k» L()’ Mis M2$ Mgs M4, n.

is the frictional resistance factor;
is the value of ¢f when x = 0;
are constants;

D =1+ (&/z))REY(@RFYVdx); E = 1 + H; L =k¥zd; H = s5/88%;

l

is the mixing-path length;
is the pressure;

p
Py = —U"/U%Re; P,= —R"/R'Re; Re = UjR,/V; Reg = UR/WV;

R
Ry

is the radius of the channel wall;
is the value of R when x = 0;

RY = R/Ry; R" = dR%dx"; r¥=1- 6/R; RE* = USE*/uR; RES = USKEAR;

u, w, andv

u', w', and v'

U

Uy

U = U/U,; U = du¥/ax’;
Wo

Vie = VT10/P3 Voy = VT30/0

x, ¢, and r

are the velocity components in the directions of the axes x, ¢, r;
are the turbulence pulsations of the velocity components;

is the value of the velocity u outside of the boundary layer;

is the value of U when x = 0

is the value of w outside of the boundary layer;

are cylindrical coordinates;

X =x/Rp; y=R—r; y* = y/5; z1=kU/v1*; zg=kI‘1/I‘*;
6

T =rw; I} = Rwy; Ty = Rvyy
f

is the thickness of the boundary layer;
is the half-angle of divergence for the diffuser;

is the value of x when x = 0;

is the channel resistance factor;

is the kinematic coefficient of viscosity;

is the density;

are the frictional stress components along the axis of rotation and
in the circumferential direction, respectively;

are the values of 7; and T, at the channel wall;

is the value of X when x = 0;.
denotes averaging,
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